[建模方法]材料参数设置

本文档适用于:所有版本 说明:使用者的材料公式常与软件内置公式不同。一旦材料参数设置出错,整个仿真无法进行。 建议参考:帮助手册-附录-II Lorentz 材料模型相关公式推导

本文将就 Lorentz 材料材料模型,具体说明公式不同时,材料参数设置的方式。 材料模型来源:Thin Solid Films 517 (2009) 2963-2967。

特别感谢:宁波大学黄水平老师。

第一种方法:

核对软件公式与文献公式,分析参数的对应关系并进行转化。

先不考虑分母虚部前面的正负号问题,比较之后,发现:

	软件中	=	文献中
Drude 部分	ω _c		γ
	ω _p		$\varepsilon_{\infty}\omega_p^2$
Lorentz 部分	ω_a^2		ω_{T0}^2
	ω _p		$S\omega_{T0}^2$
	ω _c		Г

根据文献中的具体参数:

E _m	$\omega_p (\times 10^{14} \text{ Hz})$	γ (×10 ¹⁴ Hz)	j	Sj	$\omega_{\pi 0 j}$ (× 10 ¹⁴ Hz)	$\Gamma_{j} (\times 10^{14} \text{ Hz})$
3.972	10.1	2.31	1	3.981	0.852	0.078
			2	2.059	1.15	0.068
			3	2.91	1.7	0.332
			4	1.332	2.49	0.781

得到软件中设置的参数:

		软件中	文献中	参数
		ϵ_{∞}	ϵ_{∞}	3.972
Drude 部分	0	ω_a		默认为 0
		ω _c	γ	2.31E14
		ω_p	$\sqrt{\epsilon_{\infty}}\omega_p$	20.13E14
Lorentz 部分	1	ω _a	ω_{T0}	0.852E14
		ω_p	$\sqrt{S}\omega_{T0}$	1.67E14
		ω _c	Г	0.078E14
Lorentz 部分	2	ω _a	ω_{T0}	1.15E14
		ω_p	$\sqrt{S}\omega_{T0}$	1.65 E14
		ω _c	Г	0.068E14
Lorentz 部分	3	ω _a	ω_{T0}	1.7E14
		ω_p	$\sqrt{S}\omega_{T0}$	2.90E14
		ω _c	Г	0.332E14
Lorentz 部分	4	ω _a	ω_{T0}	2.49E14
		ω_p	$\sqrt{S}\omega_{T0}$	2.87E14
		ω _c	Γ	0.781E14

对应 Matlab 脚本:

```
eps_infty = 3.972;

omega_a_0 = 0;

omega_p_0 = 20.31E14;

omega_p_0 = 20.129E14

eps_0 = omega_p_0^2/(omega_a_0^2 - omega^2 - 1i * omega_c_0 * omega);

omega_a_1 = 0.852E14;

omega_c_1 = 0.078E14;

omega_p_1 = 1.699E14;

eps_1 = omega_p_1^2/(omega_a_1^2 - omega^2 - 1i * omega_c_1 * omega);

omega_a_2 = 1.15E14;

omega_p_2 = 1.65015E14;

eps_2 = omega_p_2^2/(omega_a_2^2 - omega^2 - 1i * omega_c_2 * omega);

omega_a_3 = 1.7E14;

omega_c_3 = 0.332E14;

omega_p_3 = 2.8999E14;

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

omega_a_4 = 2.49E14;

omega_p_4 = 2.87376E14;

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps_j = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);

eps(j) = eps_infty + eps_0 + eps_1 + eps_2 + eps_3 + eps_4;
```

在软件中填入时,需要注意软件填入的是频率,而不是角频率,即:

表 6-2-3 洛伦兹色散模型参数说明表

参数名称	说明	备注
f_a	谐振频率 $f_a = \omega_a/2\pi$	
f_{c}	阻尼频率 $f_c = \omega_c/2\pi$	使田文档指完场家单位
f_p	等离子体频率 $f_p = \omega_p / 2\pi$	

因此,软件中填入:

材料 - 洛伦兹色散材料			x
名称: 适明度: []		权重: WEIGHT_AUTO 颜色:	
类型: 洛伦兹	色散材料		•
参数种类	ε:	: 3.972	
● 基本电磁参数	σe:	: 0.0	
◎ 电洛伦兹参数	μ:	: 1.0	
◎ 磁洛伦兹参数	σm :	: 0.0	
		帮助 重置 新建 取消	í

材料 - 洛伦兹色散材料					X
名称:			权	建: WEIGHT_AUTO	
透明度: —————			颜	德:	
类型: 洛伦兹的	色散材料				•
参数种类	编号	fa	fc	fp	•
◎ 基本电磁参数	1	0	2.31E14/2/PI	20.129E14/2/PI	
◎ 电洛伦兹参数	2	0.852E14/2/PI	0.078E14/2/PI	1.699E14/2/PI	=
◎ 磁洛伦兹参数	3	1.15E14/2/PI	0.068E14/2/PI	1.65015E14/2/PI	-
	4	1.7E14/2/PI	0.332E14/2/PI	2.8999E14/2/PI	
	5	2.49E14/2/PI	0.781E14/2/PI	2.87376E14/2/PI	
	*				*
		帮助	重置	新建	取消

磁洛伦兹参数空白:

材料 - 洛伦兹色散材料					×
名称:			权重:	WEIGHT_AUTO	
适明度: — []—			颜色:		
类型: 洛伦兹包	動材料				-
参数种类	编号	fa	fc	fp	
◎ 基本电磁参数	*				
◎ 电洛伦兹参数					
◎ 磁洛伦兹参数					
		帮助		新建	取消

第二种方法:

直接采用软件的参数拟合工具,拟合得到电洛伦兹参数。

通过 Matlab, 按照文献中给定的公式, 生成各个频点的介电常数实部、虚部值。

$W1(i) = S1 \otimes WT01^2/(WT01^2 = w(i)^2) + 1 \otimes w(i)$	
n()/-51*#101 2/(#101 2 w()/ 21 <mark>1</mark> *(1*w()//,	
32-2.003,5辰丁温皮 WT00-1 15-10-11,2塔台北谷格卡斯泰	
₩102=1.15*10 14;%傾向元子傑式频率	
t2=0.068*10 14;%阻尼因数	
<u>W2</u> (j)=S2*WIO2^2/(WIO2^2-w(j)^2+ <mark>i</mark> *t2*w(j));	
S3=2.91:%震子强度	
₩IO3=1.7*10^14:%橫向光学模式频率	
t3=0.332*10^14;%阻尼因数	
<pre>W3(j)=S3*WIO3^2/(WIO3^2-w(j)^2+i*t3*w(j));</pre>	
S4=1.332∶%震子强度	
WIO4=2.49*10^14:%横向光学模式频率	
t4=0.781*10^14;%阻尼因数	
W4(j)=S4*WIO4^2/(WIO4^2-w(j)^2+i*t4*w(j));	
eps(j)=eps00*(1-\p^2./(w(j).^2- <mark>i</mark> *r*w(j)))+\1(j)+\2(j)+\3(j)+\4(j);%第三	介质(LOW-E功能层)介电函数
end;	
epsreal=real(eps);	
epsimag=imag(eps);	
fre=w/2/pi:	
figure:plot(fre, epsreal); hold on; plot(fre, -epsimag, 'r');	
<pre>cailiao(:,1)=fre';</pre>	
cailiao(:,2)=epsreal';	
cailiao(:,3)=-epsimag';	

save cailiao.txt -ascii cailiao;

然后采用软件的材料拟合工具,进行材料拟合,具体可参见帮助手册 6.2.17 一节。

这里我们选择5个振子,数目与文献中的相同。

点击开始,开始拟合。拟合完成后,可看到标准差只有0.00114912。拟合效果非常好。

EastWave 5.0 辅助教程

双击该材料,打开查看洛伦兹色散材料参数,就可以看到拟合后的阵子了。

材料 - 洛伦兹色散材料				×
名称: fitting_ 透明度: ①	.0	•	权重: WEIGHT_AUTO 颜色:	
类型: 洛伦兹	色散材料			-
参数种类	ε:	3.90463		
◎ 基本电磁参数	σe :	0		
◎ 电洛伦兹参数	μ:	1.0		
◎ 磁洛伦兹参数	σm :	0.0		
		帮助 重置	修改 取	Ĭ

名称: fittin 适明度: □	g_0			: WEIGHT_AUTO	
类型: 洛伦;	兹色散材料				
参数种类	编号	fa	fc	fp	_
🔿 基本电磁参数	1	3.30895e+014	1.6664e+012	1.38574e+013	
◎ 电洛伦兹参数	2	4.54018e+014	6.45967e+014	1.02085e+013	=
◎ 磁洛伦兹参数	3	6.38212e+013	1.03955e+014	7.96134e+013	
	4	1.14395e+013	3.06373e+013	3.18691e+014	
	5	9.71323e+014	1.65156e+014	2.28807e+014	
	*				*
		帮助	重置	修改	取消