[建模方法]材料参数设置

本文档适用于:所有版本

说明:使用者的材料公式常与软件内置公式不同。一旦材料参数设置出错,整个仿真无法进行。

建议参考:帮助手册-附录-II Lorentz 材料模型相关公式推导

本文将就 Lorentz 材料材料模型,具体说明公式不同时,材料参数设置的方式。

材料模型来源: Thin Solid Films 517 (2009) 2963-2967。

特别感谢:宁波大学黄水平老师。

第一种方法:

核对软件公式与文献公式,分析参数的对应关系并进行转化。

先不考虑分母虚部前面的正负号问题,比较之后,发现:

	软件中	=	文献中
Drude 部分	ω_{c}		γ
	ω_{p}		$\epsilon_{\infty}\omega_{p}^{2}$
Lorentz 部分	ω_a^2		ω_{T0}^2
	ω_{p}		$S\omega_{T0}^2$
	$\omega_{\rm c}$		Γ

根据文献中的具体参数:

©东峻信息科技有限公司 32

€	$\omega_p~(\times 10^{14}~{\rm Hz})$	γ (×10 ¹⁴ Hz)	j	S_j	ω _{τοj} (×10 ¹⁴ Hz)	$\Gamma_j (\times 10^{14} \text{Hz})$
3.972	10.1	2,31	1	3.981	0.852	0.078
			2	2.059	1,15	0.068
			3	2.91	1.7	0.332
			4	1,332	2.49	0.781

得到软件中设置的参数:

		软件中	文献中	参数
		ϵ_{∞}	ϵ_{∞}	3.972
Drude 部分	0	ω_a		默认为 0
		ω_c	γ	2.31E14
		ω_p	$\sqrt{\epsilon_{\infty}}\omega_{p}$	20.13E14
Lorentz 部分	1	ω_a	ω_{T0}	0.852E14
		ω_p	$\sqrt{S}\omega_{T0}$	1.67E14
		ω_c	Γ	0.078E14
Lorentz 部分	2	ω_a	ω_{T0}	1.15E14
		ω_p	$\sqrt{S}\omega_{T0}$	1.65 E14
		ω_c	Γ	0.068E14
Lorentz 部分	3	ω_a	ω_{T0}	1.7E14
		ω_p	$\sqrt{S}\omega_{T0}$	2.90E14
		ω_c	Γ	0.332E14
Lorentz 部分	4	ω_a	ω_{T0}	2.49E14
		ω_p	$\sqrt{S}\omega_{T0}$	2.87E14
		ω_c	Γ	0.781E14

对应 Matlab 脚本:

```
eps_infty = 3.972;
omega_a_0 = 0;
omega_c_0 = 2.31E14;
omega_p_0 = 20.129E14

eps_0 = omega_p_0^2/(omega_a_0^2 - omega^2 - 1i * omega_c_0 * omega);
omega_a_1 = 0.852E14;
omega_c_1 = 0.078E14;
omega_p_1 = 1.699E14;
eps_1 = omega_p_1^2/(omega_a_1^2 - omega^2 - 1i * omega_c_1 * omega);
omega_a_2 = 1.15E14;
omega_c_2 = 0.068E14;
omega_p_2 = 1.65015E14;
eps_2 = omega_p_2^2/(omega_a_2^2 - omega^2 - 1i * omega_c_2 * omega);
omega_a_3 = 1.7E14;
omega_c_3 = 0.332E14;
omega_p_3 = 2.8999E14;
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
omega_a_4 = 2.49E14;
omega_c_4 = 0.781E14;
omega_p_4 = 2.87376E14;
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_1 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_2 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_2 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega);
eps_3 = omega_p_3^2/(omega_a_3^2 - omega^2 - 1i * omega_c_3 * omega_c_3
```

在软件中填入时,需要注意软件填入的是频率,而不是角频率,即:

表 6-2-3 洛伦兹色散模型参数说明表

参数名称	说明	备注
f_a	谐振频率 f_a = $\omega_a/2\pi$	
f_c	阻尼频率f。=ω。/2π	, - 使用文档指定频率单位
f_p	等离子体频率 f_p = $\omega_p/2\pi$	

因此,软件中填入:

磁洛伦兹参数空白:

第二种方法:

直接采用软件的参数拟合工具,拟合得到电洛伦兹参数。

通过 Matlab,按照文献中给定的公式,生成各个频点的介电常数实部、虚部值。

```
W1(j)=S1*WIO1^2/(WIO1^2-w(j)^2+i*t1*w(j));
   S2=2.059;%震子强度
   WIO2=1.15*10^14;%横向光学模式频率
   t2=0.068*10^14;%阻尼因数
   W2(j)=S2*WIO2^2/(WIO2^2-w(j)^2+i*t2*w(j));
   S3=2.91;%震子强度
   WIO3=1.7*10^14;%横向光学模式频率
   t3=0.332*10^14;%阻尼因数
   W3(j)=S3*WIO3^2/(WIO3^2-w(j)^2+i*t3*w(j));
   S4=1.332;%震子强度
   WIO4=2.49*10^14;%横向光学模式频率
   t4=0.781*10^14;%阻尼因数
   W4(j)=S4*WIO4^2/(WIO4^2-w(j)^2+i*t4*w(j));
   eps(j)=eps00*(1-Wp^2./(w(j).^2-i*r*w(j)))+W1(j)+W2(j)+W3(j)+W4(j);%第三介质(LOW-E功能层)介电函数
epsreal=real(eps);
epsimag=imag(eps);
fre=w/2/pi;
figure:plot(fre, epsreal); hold on; plot(fre, -epsimag, '--r');
cailiao(:,1)=fre';
cailiao(:,2)=epsreal';
cailiao(:,3)=-epsimag';
save cailiao.txt -ascii cailiao;
```

然后采用软件的材料拟合工具,进行材料拟合,具体可参见帮助手册 6.2.17 一节。

点击开始,开始拟合。拟合完成后,可看到标准差只有0.00114912。拟合效果非常好。

点击确定,材料库中会挂载拟合后的材料 "fitting_0":

双击该材料,打开查看洛伦兹色散材料参数,就可以看到拟合后的阵子了。

